SDGsと低環境負荷材料・プロセス開発の動向(2019年12月調査)
※紙媒体で資料をご利用される場合は、書籍版とのセット購入をご検討ください。書籍版が無い【PDF商品のみ】取り扱いの調査資料もございますので、何卒ご了承ください。
調査資料詳細データ
本調査レポートは、定期刊行物 Yano E plus 2020年1月号 に掲載されたものです。
1.SDGsとは
2.SDGsにおける材料・プロセス開発の果たす役割
3.SDGsに関する世界と日本の取り組み
3-1.米国
3-2.欧州
3-3.日本
4.低環境負荷材料・プロセス
4-1.有機材料・プロセス
4-2.無機材料・プロセス
4-3.電子材料・プロセス
(1)ソフトマテリアルで構成された電子機器
(2)超低消費電力かつ資源再利用に対応した太陽電池フィルム
(3)ドラッグデリバリーシステム等を活用した治療
4-4.土木・建築材料・プロセス
4-5.塗料・プロセス
4-6.触媒・プロセス
5.低環境負荷材料の市場規模予測
【図・表1.低環境負荷材料の国内およびWW市場規模推移と予測
(金額:2018-2030年予測)】
【図・表2.低環境負荷材料の種類別国内市場規模推移と予測
(金額:2018-2030年予測)】
6.低環境負荷材料およびプロセスに関する企業・研究機関の取り組み動向
6-1.鹿島建設株式会社
(1)多様な生物の生息環境を創出する
低環境負荷型ポーラスコンクリート
(2)CO2排出量ゼロ以下の低環境負荷型コンクリート
「CO2-SUICOM®」
(3)構造用再生骨材コンクリート
6-2.国立大学法人九州大学
6-3.国立大学法人京都大学
6-4.住友化学株式会社
6-5.国立大学法人千葉大学
【図1.無溶媒トナー印刷法のプロセスを模式的に示した図】
【図2.無溶媒トナー印刷法で配線パターニングした例】
【図3.曲面上に形成した薄膜トランジスターアレイの例】
6-6.国立大学法人筑波大学
(1)新しい合成法の開拓に基づく機能性高分子の分子設計
【図4.従来のクロスカップリング重合と
脱水素型クロスカップリング重合】
【図5.本研究で合成した高分子を用いて作製した有機EL素子の
動作写真(中央部の光っている部分が発光素子)】
(2)硫黄資源を利用した機能性分子材料の創製
【図6.ポリチオアミドの合成とその機能評価】
6-7.株式会社TBM
6-8.国立大学法人東京工業大学
(1)未利用光を利用可能な波長に変換する
新しい材料プラットフォームを開発
【図7.光利用における根本制限の存在およびフォトンUCの概念図】
(2)強制対流冷却において「物体を冷やしながら発電する」
新技術を創出
【図8.(左)現状の冷却の状況 (右)本成果のコンセプト】
6-9.国立大学法人東北大学
【図9.PEFCの内部構造】
【図10.次世代燃料電池電極触媒】
6-10.国立大学法人名古屋大学
6-11.日本材料技研株式会社
(1)D-乳酸
【図11.無中和発酵技術を用いたD-乳酸製造プロセスの模式図】
(2)ノンハライト®
【図12.(左)ノンハライト®の実物
(右)ノンハライト®を用いた反応システム】
6-12.日本電信電話株式会社(NTT)
6-13.国立大学法人広島大学
【図13.コルーサイトCu26V2M6S32(M:Ge, Sn)の結晶構造】
6-14.株式会社三菱ケミカルホールディングス(三菱ケミカル)
7.SDGs達成に向けたSTIの重要性と日本の役割
このレポートの関連情報やさらに詳しい情報についての調査を検討したい
矢野経済研究所では、
個別のクライアント様からの調査も承っております
マーケティングや経営課題の抽出、リサーチの企画設計・実施、調査結果に基づく具体的な戦略立案・実行支援に至るまで、課題解決に向けた全ての段階において、クライアント企業をトータルでサポート致します。